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ABSTRACT 
High speed network traffic monitoring generates large 
volumes of data. This data is composed of parameter sets 
that are ext racted from packets (and packet switching 
processes) as they transit points of inspection. Effective 
countermeasures and event detection capabilities for early 
attack sensing and warning (ASW) are predicated on 
methods that can be deployed at an autonomous system 
boundary in the carrier backbone network. Thus the optimal 
point of inspection (for ASW) is in a very noisy, high-speed 
/ large-data volume environment. Inspection and detection 
schemes are severely constrained by the speed-volume 
factors and the low information content (quality) that is 
available at this point of inspection.  

  

1. INTRODUCTION 
A hidden Markov modeling (HMM) technique to detect 
denial of service/ distributed denial of service attacks 
required parameters for the basic model.  The initial effort 
has focused on the question: " what observable parameters 
are important?"  To answer this question, researchers 
developed some techniques to evaluate the significance of 
parameters. The general objective is to find the minimum set 
of parameters needed to detect specific events. The ultimate 
intent is to produce efficient algorithms for the detection of 
events in high- speed gateways where minimal knowledge is 
available concerning the source and/or destination 
computing environments. 

 

2. METHODOLOGY: GROUNDED THEORY 
Grounded theory method (GTM) is a process for the 
construction of theory from observable phenomena. With 
GTM, the theory is inductively derived from the study of 
the behavior under consideration. There are three basic 
elements of grounded theory: concepts, categories and 
propositions. Grounded theory method is used in this 
research to develop theory concerning the observable 
features of browser requests directed to a Web Server.  The 
intent is to inductively derive a generalized relationship 
between the observable features that identifies the browser 
request as either an attack (or part of an attack) or a valid 

browser request.  There are five analytic phases (and not 
strictly sequential) in this process [Pandit, 1996]: 

i. Research design- defines the data capture 
method, conceptualization of data and the 
categorization technique. 

ii. Data collection- at the Web Server, observation is 
constrained to the features that are observable in 
the browser request. 

iii. Data ordering- by browser request type (i.e. know 
attack, know valid, etc.) 

iv. Data analysis - apply mathematical algorithm, 
perform statistical analysis and data mining 

v. Literature comparison- review of related research 
The grounded theory method is well-suited to this problem. 
The researchers could not develop a theory a priori and 
then test it.  In fact, it was not known that any theory 
actually existed.  The grounded truth method provides an 
iterative process where data collection, analysis and theory 
stand in a reciprocal relationship [Strauss, Corbin 1990] 
Specifically for this research, it was assumed that if any 
theory existed, a systematic collection, management and 
analysis of data pertaining to the observable phenomena 
would yield an inductively derived construction of the 
theory.   This method assumes that the variables have acted 
and the research is limited to measuring the effects. [In 
counterpoint a true experiment manipulates variables and 
measures the causal effects]. A weakness of this method is 
the requirement to: 

Ø Infer a hypothesis (or set of hypotheses) from 
the statistical analysis. 

Ø Eliminate competing hypotheses, until a single 
hypothesis is validated [Hicks, 1993].  

This paper presents some initial findings and does not 
attempt to identify and eliminate competing hypotheses in a 
formal proof. The limits of this work in its current state are 
readily acknowledged. However, we have noted that a 
serious effort is underway by many organizations to create 
systems that can provide ASW functionality. We believe a 
structured approach to build a framework for rigorous 
analysis and proof of hypothesis is needed for these 
efforts. This paper provides an introduction to several 
concepts that apply.  

The CaptureNet tool extracted packet feature information 
from the point of inspection depicted below to build the 



required data sets. The data was then stored in comma 
separated value (CSV) format for replay and statistical 
analysis. The victim machine is an email server, the attack 
machine is a Microsoft Windows 2000 client, running email 
attack programs. The "normal" mail traffic features are 
extracted from a machine that is assume to have normal 
hygiene (i.e. the traffic is free of any type of email attack). 
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Figure 1. Lab configuration 

3. ANALYSIS 
A neural network was used to evaluate parameter 
significance. PathFinderTM  [Z Solutions, Inc.] is an 
adaptive neural network that learns using an iterative 
process called back propagation. A discussion of neural 
networks is beyond the scope of this paper, but the 
interested reader is referred to a tutorial available from Z 
Solutions for additional information. The following five 
parameters were selected for significance testing: (X1) 
source port, (X2) destination port, (X3) sequence number, 
(X4) acknowledgment number and (X5) packet size. The 
sigmoid transformation was selected for the output, where 
A (output = 0) is a determination of an attack and N (output 
=1) is a determination that the traffic is normal. Figure (2) 
depicts the configuration of the PathFinderTM Three sets of 
data were generated: 

1. Training set- uses parameters derived from normal 
(sibley) traffic and two attack programs (Aenima, Xmas 
2000).   

2. Test set- uses non-overlapping parameters from the 
same traffic types (sibley, Aenima and Xmas 2000) as 
the training set.  

3. Validation set- uses non-overlapping data from the 
previous traffic types (sibley, Aenima, Xmas 2000) plus 
the addition of another attack traffic parameter set 
(Kaboom). 
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 Figure 2. PathFinderTM  configuration 

PathfinderTM   is an application that was designed to help 
users utilize neural networks.  It has an interface with 
Microsoft Excel  for data management and analysis. The 
learning algorithm employs back propagation. PathfinderTM  
uses three data sets to perform a neural network analysis.  
The three data sets are the (1) training set, (2) the test set, 
and (3) the validation set.   

§ The training set is the set of data used by the 
neural network to learn the problem. 

§ The test set is used during training to keep an eye 
on learning performance.   

§ The validation set is used after training as a final 
check to find out how well the model performs.   

The learning parameters in a neural network control the rate 
of learning.  PathfinderTM uses an advanced algorithm to set 
the learning parameters for our problem. The network 
architecture (shown in figure 2) is controlled by these 
parameters: 

§ Output nodes- the number of output nodes, the 
number of output nodes is one and the result 
either 0 or 1. 

 
§ Output transform function- the output 

transformation function PathfinderTM allows two 
possible output transformations: the sigmoid 
transformation or the linear transformation.  Z 
Solutions recommends using sigmoid 
transformation. 

§ Hidden Nodes- The number of hidden nodes 
controls the number of weights in the model.  
Usually, the greater the complexity of the problem 
the more nodes are needed.  On the other hand, 
too many nodes may lead to over-fitting. 
PathfinderTM defaults to 6 hidden nodes and 
rarely requires significantly more. 

§ Epoch size- The epoch size is the number of 
observations seen by the learning algorithm 
before weight adjustments.  The idea is to look at 
a large enough epochs that noisy extraneous data 
points will not excessively influence the results 
and small enough that specific details can be 



determined.  PathfinderTM defaults to an epoch 
size of 12.  This is a good place to start and 
usually experiment in the range of 6 to 64. 

 

The data considered in this study was collected in three 
scenarios.  Each email attack tool was instructed to bomb 
one hundred emails from its machine to the target.  After 
recording all the emails traffic at the target computer, 
packets were averaged based on their email size.  Number of 
packets’ email varies depending on their size.  If one email 
has 10 packets, they were averaged to one packet.  
Moreover, one hundred normal emails were sent from their 
machines to the victim’s machine.  Seven different email-
bombing tools were used and four different normal emails 
were sent.  Four of the email bombing were mixed with two 
of the normal emails and used during the training of the 
neural networks.  Also, two of the email bombing were 
mixed with two of the normal emails and used during the 
validation process.   

Significance testing was performed on several parameters:  

§ Datagram length (dgmlen),  
§ Acknowledgment number (tcpack) 
§ Sequence number (tcpseq) 
§ Header checksum for both TCP and IP (tcpsum , 

ipsum) 
§ Window size (tcpwindow).   
§ A class variable- was added to show whether the 

email was normal (1) or attack (0).  
 The inputs are dgmlen, tcpack, tcpseq, tcpsum, ipsum and 
the output is class.  The data is divided into three data sets: 
training data, test data, and validation data.  Training and 
test data were collected first and validation data were 
collected second.  The validate data is used after training is 
completed to determine how accurate a neural network 
model is on data not seen during training.  Samples of 
training, test and validation data are shown in the following 
tables. 

                                                                                       

 

 

 

 

Table 1. Sample training data       

dgmlen ipsum tcpseq tcpack tcpwindow tcpsum class
659.8 26844.7 2508747052 3067442870 11042.4 43778.3 1
577.5 26699.6 2508999080 3067682224 14101 26189.3 1
59.3 30288.9 2732277838 2318855137 17135.7 28384.9 1
75.1 33540.9 1385924998 1385925020 12596.7 33503.9 0
110 31719.8 2648319293 2648319336 16723 32863.5 1

308.9 29614.2 2457418608 3016359125 16564.7 32257.8 1
756.2 25863.8 2229478565 3346824468 12798.1 23301.9 1
902.2 25437 2229698073 3346918666 12809.1 21216.9 1
106.5 20534.5 4104389228 4104389272 16891.8 32608.4 0
223.2 28027.8 677676449 677676478.2 17215.9 40316.8 0
756.2 26002.6 2229373722 3346779126 13514.3 28012 1

916 26488.3 2508810165 3067484471 14067 28188.2 1
236.5 33311.8 2965863799 2847922313 17357.8 39297.6 1  

 
 

Table 2. Sample of test data 

dgmlen ipsum tcpseq tcpack tcpwindow tcpsum class
78.2 28127.8 677683544 677683570.3 17081.7 33021.5 0

222.1 28138.9 677658924 677658957.3 17192.8 36687.3 0
127.5 20388.5 4104398779 4104398848 16745.7 35787.2 0
720.4 29169.4 2153211985 3271149311 14657.5 33739.3 1
223.2 28252.8 677640504 677640532.9 17257.1 31643.9 0
94.7 20763.3 4104372507 4104372546 16666.1 30355 0

377.1 30626.4 2991676034 2432713351 13896.5 18562.3 1
75.1 21975.9 1385919206 1385919228 12448.2 25574.9 0

126.5 20871.5 4104361689 4104361757 17008.2 40494.3 0
223.7 28476.3 677605269 677605298.8 17249.5 33677.2 0

728 28724.9 2182284131 3300163111 16516.9 25981.1 1
169.6 31521.1 2656060032 2656060059 17185.1 37282.7 1
86.3 20801.7 4104370149 4104370180 17438.5 40441.5 0  

 
 
dgmlen ipsum tcpseq tcpack tcpwindow tcpsum class Predicted

116.6 28815 3067703904 2508976443 16926.4 24227.6 1 0
75.1 19405.9 1385928859 1385928881 12452.7 32479.4 0 0

122.5 20358.5 4104401495 4104401559 16884.4 40971.5 0 1
85.3 28260.7 677661404 677661438.8 16896.7 27233 0 0

987.6 25516.2 2229557428 3346858449 13525.3 28613.6 1 0
916 26131.3 2509059837 3067650919 12963.4 37750.6 1 1

105.9 20747.1 4104372927 4104372970 16390.5 38828.5 0 0
75.1 25830.9 1385918153 1385918175 12017.7 28111.4 0 0
95.7 18942.9 3808333236 3808333278 16577.2 40127.1 0 0
75.1 10410.9 1385922365 1385922387 12265.2 32546.9 0 0

745.2 26307.3 2509055093 3067647818 11106.8 19659.4 1 0
126.5 20434.5 4104395301 4104395367 16949.2 41833.9 0 0
805.8 28693.6 2177965057 3295836986 13299.1 29807.3 1 1  

 

Table 4. Sample of validation data 

dgmlen ipsum tcpseq tcpsequp tcpack tcpackup 
tcpw indo

w  tcpsum class 

720.4 33693.1 1864463456 28448.8 2193325658 33467.2 14538.7 23395.3 ? 

226.5 36018.5 2296906199 35047.3 2296906241 35047.3 16927.9 37351 ? 

175.5 36101.5 2296653235 35043.7 2296653251 35043.7 17420.8 40386.6 ? 

209.4 41104.6 2022477647 30860 2022477940 30860 17076.1 41528.6 ? 

304.6 37518.3 1946667757 29703.4 2111102747 32212.6 16592 38595.7 ? 

79.1 36231 2296486259 35041 2240366093 34184.8 17074.2 38180.1 ? 

350.7 40935.8 2024539357 30891.5 2024539773 30891.5 16665.2 38980.1 ? 

805.8 33618.9 1864454013 28448.8 2193321939 33467.2 16516.9 21188.9 ? 

Table 3. results (highlighted were missed) 



 

 
The data considered in this study were obtained by using 
the three scenarios discussed above.  The first test results 
suggest that it is possible to distinguish between normal 
and attack email streams with more than 85 % of accuracy,  

 
MAPE-Mean absolute percentage error 
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as shown in Figure 3. The table below shows a sample of 
these results. 

Figure 3. Error Rates, showing an 88 % Accuracy 

 

 

 

 

 

 

 

 

 

 

 

The highlighted rows are false alarms (i.e. mismatches 
between the class and the predicted columns). Four different 
error calculations were performed on the test results.  The 
error calculations are defined as follows:   

MAE - Mean absolute error 
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Where N = Number of observations (i. e. the number of rows 
in the data matrix). 

MSE - Mean square error 
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Where N = Number of observations.  

The mean square error calculates the square of the errors;  

RMSE - Root mean square error  
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 Where N = Number of observations. 

Where N = Number of observations.  

                             Table 5.  Errors values 

Training Data 400 rows 

Test Observations 233 rows 

Validation 
Observations 

193 rows 

RMSE 0.3274 

MAPE 3.27 % 

MAE 0.5 

 

 

 

 

 

                  

 

 

 

 

        Figure 4 Error vs. Predicted 

  

4. RESULTS WITH NEURAL NETWORK 
 

RMSE - Root mean square error  
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 Where N = Number of observations. 

The root mean square error is simply the square root of the mean 
square error. 

 

MAPE-Mean absolute percentage error 
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Where N = Number of observations.  
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During validation testing, PathFinderTM correctly associated 
(100%) of the parameters used in the training (and test) data 
sets with either a normal or attack traffic event as appropriate. 
Parameters associated with a previously unseen attack 
("Kaboom") were correctly associated with an attack 85% of 
the time. 

 Data 

 Correct Incorrect 

Attack  
138 

 (83.1%) 

28 

(16.9%) 

Normal 
27  

(100%) 

0  

(12.9%) 

 165 

 (85.5%) 

28 

 (14.5%) 
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